Package: recmetrics 0.1.0

recmetrics: Psychometric Evaluation Using Relative Excess Correlations

Modern results of psychometric theory are implemented to provide users with a way of evaluating the internal structure of a set of items guided by theory. These methods are discussed in detail in VanderWeele and Padgett (2024) <doi:10.31234/osf.io/rnbk5>. The relative excess correlation matrices will, generally, have numerous negative entries even if all of the raw correlations between each pair of indicators are positive. The positive deviations of the relative excess correlation matrix entries help identify clusters of indicators that are more strongly related to one another, providing insights somewhat analogous to factor analysis, but without the need for rotations or decisions concerning the number of factors. A goal similar to exploratory/confirmatory factor analysis, but 'recmetrics' uses novel methods that do not rely on assumptions of latent variables or latent variable structures.

Authors:R. Noah Padgett [aut, cre, cph]

recmetrics_0.1.0.tar.gz
recmetrics_0.1.0.zip(r-4.5)recmetrics_0.1.0.zip(r-4.4)recmetrics_0.1.0.zip(r-4.3)
recmetrics_0.1.0.tgz(r-4.4-any)recmetrics_0.1.0.tgz(r-4.3-any)
recmetrics_0.1.0.tar.gz(r-4.5-noble)recmetrics_0.1.0.tar.gz(r-4.4-noble)
recmetrics_0.1.0.tgz(r-4.4-emscripten)recmetrics_0.1.0.tgz(r-4.3-emscripten)
recmetrics.pdf |recmetrics.html
recmetrics/json (API)
NEWS

# Install 'recmetrics' in R:
install.packages('recmetrics', repos = c('https://noah-padgett.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/noah-padgett/recmetrics/issues

Datasets:
  • SCWB - Subjective Community Well-Being Dataset

On CRAN:

3.30 score 3 scripts 121 downloads 11 exports 16 dependencies

Last updated 9 months agofrom:42846c372d. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-winOKOct 25 2024
R-4.5-linuxOKOct 25 2024
R-4.4-winOKOct 25 2024
R-4.4-macOKOct 25 2024
R-4.3-winOKOct 25 2024
R-4.3-macOKOct 25 2024

Exports:%>%append_observed_residualscor.orccor.reccor.rowMeanscov.orccov.recrec.averagerec.avg.wb.domainsrec.coherencerec.pattern.matrix

Dependencies:clidplyrfansigenericsgluelifecyclemagrittrpillarpkgconfigR6rlangtibbletidyselectutf8vctrswithr